
DESIR Winter School: Shaping
new approaches to data
management in arts and

humanities

Open Research Notebooks

10-13 Dec 2019 Lisbon (Portugal)

About me

Javier de la Rosa, versae@gmail.com
(mailto:versae@gmail.com), @versae
(https://twitter.com/versae) 

Postdoctoral Researcher in NLP at UNED (ERC
POSTDATA Project), Spain 
PhD in Hispanic Studies (Digital Humanities),
University of Western Ontario, Canada 
Master in Artificial Intelligence, Universidad de
Sevilla, Spain 

Ex-Research Software Engineer at Stanford
University, California 
Ex-Technical Lead at the CulturePlex Lab,
University of Western Ontario, Canada

Introduction

New approaches to data management in arts and humanities:

What is data in the humanities?
Data and Software citation practices, PIDs
Open Research Notebooks
IPR and licensing
Data Management Plans (DMP)

mailto:versae@gmail.com
https://twitter.com/versae


Introduction

Pontika, Nancy, et al. "Fostering open science to research using a taxonomy and an eLearning portal." Proceedings of

the 15th international conference on knowledge technologies and data-driven business. ACM, 2015.

Notebooks

Virtual environment
Literate programming (Donald Knuth, 1983)

Weaving: Generating a comprehensive document about the program and its maintenance.
Tangling: Generating machine executable code

Document research procedures, data, calculations, and findings
Track methodology to make it easier to reproduce results



History

1988, Wolfram Mathematica 1.0 (Demo! (https://www.wolfram.com/broadcast/video.php?
sx=&p=63&v=741))

The Mathematica Story: A Scrapbook https://www.wolfram.com/mathematica/scrapbook/

https://www.wolfram.com/broadcast/video.php?sx=&p=63&v=741


History

1989, Maple 4.3

Schreiner, Wolfgang, Christian Mittermaier, and Karoly Bosa. "Distributed Maple: Parallel computer algebra in

networked environments." Journal of Symbolic Computation 35.3 (2003): 305-347.



History

1997, MuPAD (acquired by Matlab in 2008)

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=15024533



History

2001, IPython

By Mbussonn - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68247365

(https://commons.wikimedia.org/w/index.php?curid=68247365)

https://commons.wikimedia.org/w/index.php?curid=68247365


History

2011, IPython 0.12 (IPython Notebook)

By Shishirdasika - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30482405



History

2014, Jupyter

By Tobias1984 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49790166



Notebooks

Libre

Apache Zeppelin (https://zeppelin.apache.org/)

Jupyter Notebook (https://jupyter.org/) (formerly IPython)

JupyterLab (https://jupyterlab.readthedocs.io/en/stable/)

Mozilla Iodide (https://iodide.io)

SageMath (http://www.sagemath.org/)

R Markdown (https://rmarkdown.rstudio.com/)

Notebooks

Not libre

Mathematica

Maple

Matlab

SMath Studio

Carbide

Databricks cloud

Observable

https://zeppelin.apache.org/
https://jupyter.org/
https://jupyterlab.readthedocs.io/en/stable/
https://iodide.io/
http://www.sagemath.org/
https://rmarkdown.rstudio.com/


Jupyter

Why Python though? Trends worldwide...

Pierre Carbonnelle, 2019. http://pypl.github.io/PYPL.html



Jupyter

Why Python though? In Data Science...



Jupyter

Why Python though? In Digital Humanities...

Laure Barbot et. al. Tools mentioned in the proceedings of the annual ADHO conferences (2015–2019) https://lehkost.github.io/tools-dh-

proceedings/index.html



What is Jupyter?

Jupyter notebook, formerly known as IPython (or Interactive Python), is a flexible and powerful open source research tool that can

help you keep a narrative of your coding process. The name Jupyter is an acronym of the three core languages it was designed

for: JUlia, PYThon, and R. Project Jupyter supports interactive data science and scientific computing across more than 40

programming languages.

https://jupyter.org/

Software Carpentry and Data Carpentry's ["Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter as Coding Diary

You can think of the notebook as a lab or field diary that keeps a detailed record of the steps you take as you develop scripts

and programming workflows. Just as you would with a field notebook, it is important to develop good note-taking habits.

Software Carpentry and Data Carpentry's ["Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)



Jupyter as Literate Computing

A literate computing environment is one that allows users not only to execute commands but also to store in a
literate document format the results of these commands along with figures and free-form text that can

include formatted mathematical expressions. In practice it can be seen as a blend of a command-line

environment such as the Unix shell with a word processor, since the resulting documents can be read like text,

but contain blocks of code that were executed by the underlying computational system

-- Fernando Pérez

Millman, KJ and Fernando Perez. 2014. “Developing open source scientific practice”. In Implementing Reproducible Research, Ed. Victoria

Stodden, Friedrich Leisch, and Roger D. Peng. https://osf.io/h9gsd/

Jupyter Architecture

On the front-end, the user will work with the:

1. Web Application: Browser-based tool for interactive development of notebook documents

2. Notebook Document: A representation of all content visible in the web application (internally stored as JSON files with the

.ipynb extension)

Software Carpentry and Data Carpentry's ["Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter Architecture

On the back-end (see more at [1 (http://jupyter-notebook.readthedocs.io/en/latest/notebook.html), 2

(http://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html)]):

1. Kernel: A separate process responsible for running user code. We will be working on Python kernels, although Jupyter is

capable of interfacing with other programming languages as well.

2. Notebook Server: Communicates with kernel and routes the Python programming language to the web browser.

Software Carpentry and Data Carpentry's ["Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

http://jupyter-notebook.readthedocs.io/en/latest/notebook.html
http://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html


Jupyter Architecture

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html



Jupyter and the IPython Kernel

At its core, Jupyter works as a frontend to IPython.

IPython https://ipython.readthedocs.io/en/stable/

In [1]:

import secrets; from IPython.display import display, Markdown; from notebook import notebookapp

; display(Markdown(f"[File → Open → New → Terminal]({list(notebookapp.list_running_servers())

[0]['base_url']}terminals/{secrets.token_hex(8)})"))

Jupyter and the IPython Kernel

The REPL (Read-Eval-Print-Loop):

while True: 

    code = input(">>> ") 

    exec(code)

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

File → Open → New → Terminal (/terminals/94788ac49d3b0563)

file:///terminals/94788ac49d3b0563


Jupyter Kernels

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

Jupyter Kernels

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html



Jupyter Kernels

Name Jupyter/IPython
Version Language(s) 

Agda kernel (https://github.com/lclem/agda-kernel)

Dyalog Jupyter Kernel (https://github.com/Dyalog/dyalog-jupyter-
kernel) APL 

Coarray-Fortran (https://github.com/sourceryinstitute/jupyter-CAF-
kernel) Jupyter 4.0 Fortran 20

Ansible Jupyter Kernel (https://github.com/ansible/ansible-jupyter-
kernel)

Jupyter
5.6.0.dev0 An

sparkmagic (https://github.com/jupyter-incubator/sparkmagic) Jupyter >=4.0 Pyspark (Python 2 & 3), Spark
Spa

sas_kernel (https://github.com/sassoftware/sas_kernel) Jupyter 4.0 pytho

IPyKernel (https://github.com/ipython/ipykernel) Jupyter 4.0 python 2.7

IJulia (https://github.com/JuliaLang/IJulia.jl) juli

IHaskell (https://github.com/gibiansky/IHaskell) gh

IRuby (https://github.com/SciRuby/iruby) rub

tslab (https://github.com/yunabe/tslab) Typescript 3.7.2, JavaScript

IJavascript (https://github.com/n-riesco/ijavascript) nodejs

ITypeScript (https://github.com/nearbydelta/itypescript) Typescrip

jpCoffeescript (https://github.com/n-riesco/jp-coffeescript) coffeescrip

jp-LiveScript (https://github.com/p2edwards/jp-livescript) livescrip

ICSharp (https://github.com/zabirauf/icsharp) Jupyter 4.0

IRKernel (http://irkernel.github.io/) IPython 3.0

SageMath (http://www.sagemath.org/) Jupyter 4

pari_jupyter (https://github.com/jdemeyer/pari_jupyter) Jupyter 4 PARI/G

IFSharp (https://github.com/fsprojects/IfSharp) Jupyter 4

lgo (https://github.com/yunabe/lgo) Jupyter >= 4,
JupyterLab G

iGalileo (https://github.com/cascala/igalileo) Jupyter >= 4,
JupyterLab Galileo 

gopherlab (https://github.com/fabian-z/gopherlab) Jupyter 4.1,
JupyterLab G

Gophernotes (https://github.com/gopherdata/gophernotes)
Jupyter 4,

JupyterLab,
nteract

G

IGo (https://github.com/takluyver/igo) G

IScala (https://github.com/mattpap/IScala)

almond (old name: Jupyter-scala) (https://github.com/almond-
sh/almond) IPython>=3.0 Scal

IErlang (https://github.com/robbielynch/ierlang) IPython 2.3

https://github.com/lclem/agda-kernel
https://github.com/Dyalog/dyalog-jupyter-kernel
https://github.com/sourceryinstitute/jupyter-CAF-kernel
https://github.com/ansible/ansible-jupyter-kernel
https://github.com/jupyter-incubator/sparkmagic
https://github.com/sassoftware/sas_kernel
https://github.com/ipython/ipykernel
https://github.com/JuliaLang/IJulia.jl
https://github.com/gibiansky/IHaskell
https://github.com/SciRuby/iruby
https://github.com/yunabe/tslab
https://github.com/n-riesco/ijavascript
https://github.com/nearbydelta/itypescript
https://github.com/n-riesco/jp-coffeescript
https://github.com/p2edwards/jp-livescript
https://github.com/zabirauf/icsharp
http://irkernel.github.io/
http://www.sagemath.org/
https://github.com/jdemeyer/pari_jupyter
https://github.com/fsprojects/IfSharp
https://github.com/yunabe/lgo
https://github.com/cascala/igalileo
https://github.com/fabian-z/gopherlab
https://github.com/gopherdata/gophernotes
https://github.com/takluyver/igo
https://github.com/mattpap/IScala
https://github.com/almond-sh/almond
https://github.com/robbielynch/ierlang


Name Jupyter/IPython
Version Language(s) 

ITorch (https://github.com/facebook/iTorch) IPython >= 2.2
and <= 5.x Torch 7 

IElixir (https://github.com/pprzetacznik/IElixir) Jupyter >= 4.0 Elix

ierl (https://github.com/filmor/ierl) Jupyter >= 4.0 Erlang >= 19, Elixir >= 1.4, 

IAldor (https://github.com/mattpap/IAldor) IPython >= 1

IOCaml (https://github.com/andrewray/iocaml) IPython >= 1.1 OCaml

OCaml-Jupyter (https://github.com/akabe/ocaml-jupyter) Jupyter >= 4.0 OCaml

IForth (https://github.com/jdfreder/iforth) IPython >= 3

peforth (https://github.com/hcchengithub/peforth) IPython
6/Jupyter 5

IPerl (https://metacpan.org/release/Devel-IPerl)

Perl6 (https://github.com/gabrielash/p6-net-jupyter) Jupyter >= 4

IPerl6 (https://github.com/timo/iperl6kernel)

Jupyter-Perl6 (https://github.com/bduggan/p6-jupyter-kernel) Jupyter

IPHP (https://github.com/dawehner/ipython-php) IPython >= 2 PH

Jupyter-PHP (https://github.com/Litipk/Jupyter-PHP) Jupyter 4.0 PHP 

IOctave (https://github.com/calysto/octave_kernel) Jupyter

IScilab (https://github.com/calysto/scilab_kernel) Jupyter

MATLAB Kernel (https://github.com/calysto/matlab_kernel) Jupyter

Bash (https://github.com/takluyver/bash_kernel) IPython >= 3

Z shell (https://github.com/danylo-dubinin/zsh-jupyter-kernel) IPython >= 3 zs

Pharo Smalltalk (https://github.com/jmari/JupyterTalk) IPython >= 3 M

PowerShell (https://github.com/vors/jupyter-powershell) IPython >= 3 W

CloJupyter (https://github.com/roryk/clojupyter) Jupyter Clojur

CLJ-Jupyter (https://github.com/achesnais/clj-jupyter) Jupyter

jupyter-kernel-jsr223 (https://github.com/fiber-space/jupyter-kernel-
jsr223) Jupyter>=4.0 Clo

Hy Kernel (https://github.com/bollwyvl/hy_kernel/) Jupyter

Calysto Hy (https://github.com/Calysto/calysto_hy) Jupyter

Redis Kernel (https://github.com/supercoderz/redis_kernel) IPython >= 3

jove (https://www.npmjs.com/package/jove)

jp-babel (https://www.npmjs.com/package/jp-babel) Jupyter

ICalico (http://wiki.roboteducation.org/ICalico) IPython >= 2

IMathics (http://nbviewer.ipython.org/gist/sn6uv/8381447)

IWolfram (https://github.com/mmatera/iwolfram) Wolfram Math

Lua Kernel (https://github.com/neomantra/lua_ipython_kernel)

https://github.com/facebook/iTorch
https://github.com/pprzetacznik/IElixir
https://github.com/filmor/ierl
https://github.com/mattpap/IAldor
https://github.com/andrewray/iocaml
https://github.com/akabe/ocaml-jupyter
https://github.com/jdfreder/iforth
https://github.com/hcchengithub/peforth
https://metacpan.org/release/Devel-IPerl
https://github.com/gabrielash/p6-net-jupyter
https://github.com/timo/iperl6kernel
https://github.com/bduggan/p6-jupyter-kernel
https://github.com/dawehner/ipython-php
https://github.com/Litipk/Jupyter-PHP
https://github.com/calysto/octave_kernel
https://github.com/calysto/scilab_kernel
https://github.com/calysto/matlab_kernel
https://github.com/takluyver/bash_kernel
https://github.com/danylo-dubinin/zsh-jupyter-kernel
https://github.com/jmari/JupyterTalk
https://github.com/vors/jupyter-powershell
https://github.com/roryk/clojupyter
https://github.com/achesnais/clj-jupyter
https://github.com/fiber-space/jupyter-kernel-jsr223
https://github.com/bollwyvl/hy_kernel/
https://github.com/Calysto/calysto_hy
https://github.com/supercoderz/redis_kernel
https://www.npmjs.com/package/jove
https://www.npmjs.com/package/jp-babel
http://wiki.roboteducation.org/ICalico
http://nbviewer.ipython.org/gist/sn6uv/8381447
https://github.com/mmatera/iwolfram
https://github.com/neomantra/lua_ipython_kernel


Name Jupyter/IPython
Version Language(s) 

IPurescript (https://github.com/Eoksni/ipurescript) Pu

IPyLua (https://github.com/pakozm/IPyLua)

ILua (https://github.com/guysv/ilua)

Calysto Scheme (https://github.com/Calysto/calysto_scheme)

Calysto Processing (https://github.com/Calysto/calysto_processing) Processing

idl_kernel (https://github.com/lstagner/idl_kernel)

Mochi Kernel (https://github.com/pya/mochi-kernel)

Lua (used in Splash)
(https://github.com/scrapinghub/splash/tree/master/splash/kernel)

Apache Toree (formerly Spark Kernel)
(https://github.com/apache/incubator-toree) Jupyter Scala, P

Skulpt Python Kernel (https://github.com/Calysto/skulpt_python) Skulp

Calysto Bash (https://github.com/Calysto/calysto_bash)

MetaKernel Python
(https://github.com/Calysto/metakernel/tree/master/metakernel_python)

IVisual (https://pypi.python.org/pypi/IVisual) V

IBrainfuck (https://github.com/robbielynch/ibrainfuck) B

KDB+/Q Kernel (IKdbQ) (https://github.com/jvictorchen/IKdbQ) IPython >= 3.1

KDB+/Q Kernel (KdbQ Kernel)
(https://github.com/newtux/KdbQ_kernel) Jupyter

ICryptol (https://github.com/GaloisInc/ICryptol)

cling (https://github.com/root-mirror/cling) Jupyter 4

xeus-cling (https://github.com/QuantStack/xeus-cling) Jupyter >= 5.1

Xonsh (https://github.com/calysto/xonsh_kernel)

Prolog (https://github.com/Calysto/calysto_prolog)

SWI-Prolog (https://github.com/madmax2012/SWI-Prolog-Kernel) Jupyter >=4.0 SW

cl-jupyter (https://github.com/fredokun/cl-jupyter) Jupyter Comm

common-lisp-jupyter (https://github.com/yitzchak/common-lisp-jupyter) Jupyter Comm

Maxima-Jupyter (https://github.com/robert-dodier/maxima-jupyter) Jupyter

Calysto LC3 (https://github.com/Calysto/calysto_lc3)

Yacas (https://github.com/grzegorzmazur/yacas_kernel)

IJython (https://github.com/suvarchal/IJython) Jy

ROOT (https://github.com/root-
mirror/root/tree/master/bindings/pyroot/JupyROOT) Jupyter C++

Gnuplot Kernel (https://github.com/has2k1/gnuplot_kernel)

Tcl (https://github.com/rpep/tcl_kernel) Jupyter

https://github.com/Eoksni/ipurescript
https://github.com/pakozm/IPyLua
https://github.com/guysv/ilua
https://github.com/Calysto/calysto_scheme
https://github.com/Calysto/calysto_processing
https://github.com/lstagner/idl_kernel
https://github.com/pya/mochi-kernel
https://github.com/scrapinghub/splash/tree/master/splash/kernel
https://github.com/apache/incubator-toree
https://github.com/Calysto/skulpt_python
https://github.com/Calysto/calysto_bash
https://github.com/Calysto/metakernel/tree/master/metakernel_python
https://pypi.python.org/pypi/IVisual
https://github.com/robbielynch/ibrainfuck
https://github.com/jvictorchen/IKdbQ
https://github.com/newtux/KdbQ_kernel
https://github.com/GaloisInc/ICryptol
https://github.com/root-mirror/cling
https://github.com/QuantStack/xeus-cling
https://github.com/calysto/xonsh_kernel
https://github.com/Calysto/calysto_prolog
https://github.com/madmax2012/SWI-Prolog-Kernel
https://github.com/fredokun/cl-jupyter
https://github.com/yitzchak/common-lisp-jupyter
https://github.com/robert-dodier/maxima-jupyter
https://github.com/Calysto/calysto_lc3
https://github.com/grzegorzmazur/yacas_kernel
https://github.com/suvarchal/IJython
https://github.com/root-mirror/root/tree/master/bindings/pyroot/JupyROOT
https://github.com/has2k1/gnuplot_kernel
https://github.com/rpep/tcl_kernel


Name Jupyter/IPython
Version Language(s) 

J (https://github.com/martin-saurer/jkernel) Jupyter
Notebook/Lab J 805-807 (J9

Jython (https://github.com/fiber-space/jupyter-kernel-jsr223) Jupyter>=4.0 Jython

C (https://github.com/brendan-rius/jupyter-c-kernel) Jupyter

TaQL (https://github.com/tammojan/taql-jupyter) Jupyter

Coconut (http://coconut-lang.org/) Jupyter

SPARQL (https://github.com/paulovn/sparql-kernel) Jupyter 4 Python 2.7 

AIML chatbot (https://github.com/paulovn/aiml-chatbot-kernel) Jupyter 4 Py

IArm (https://github.com/DeepHorizons/iarm) Jupyter 4 ARMv6 

SoS (https://github.com/vatlab/SOS) Jupyter 4 Pytho

jupyter-nodejs (https://github.com/notablemind/jupyter-nodejs) Jupyter, iPython
3.x NodeJS, Babel, Cloju

Pike (https://github.com/kevinior/jupyter-pike-kernel) IPython >= 3 Pik

imatlab (https://github.com/imatlab/imatlab) ipykernel >= 4.1 MATLAB >

jupyter-kotlin (https://github.com/ligee/kotlin-jupyter) Jupyter Kotlin 1.1-M

jupyter_kernel_singular
(https://github.com/sebasguts/jupyter_kernel_singular) Jupyter Singu

spylon-kernel (https://github.com/maxpoint/spylon-kernel) ipykernel >=4.5 python >= 3.5, scala

mit-scheme-kernel (https://github.com/joeltg/mit-scheme-kernel) Jupyter 4.0 MIT Sch

elm-kernel (https://github.com/abingham/jupyter-elm-kernel) Jupyter

SciJava Jupyter Kernel (https://github.com/hadim/scijava-jupyter-
kernel) Jupyter 4.3.0 Java + 9 scripting lan

Isbt (https://github.com/ktr-skmt/Isbt) Jupyter 4.3.0 sbt 

BeakerX (http://beakerx.com/)

MicroPython
(https://github.com/goatchurchprime/jupyter_micropython_kernel/) Jupyter ESP8266

IJava (https://github.com/SpencerPark/IJava) Jupyter

Guile (https://github.com/jerry40/guile-kernel) Jupyter 5.2 Guil

circuitpython_kernel (https://github.com/adafruit/circuitpython_kernel) Jupyter Circu
(https://github.com/adafruit/circui

stata_kernel (https://github.com/kylebarron/stata_kernel) Jupyter >=5

iPyStata (https://github.com/TiesdeKok/ipystata) Jupyter

IRacket (https://github.com/rmculpepper/iracket) IPython >= 3 Racket

jupyter-dot-kernel (https://github.com/laixintao/jupyter-dot-kernel) Jupyter >= 4.0 dot/g

Teradata SQL kernel and extensions
(https://teradata.github.io/jupyterextensions/)

JupyterLab >=
0.34

HiveQL Kernel (https://github.com/EDS-APHP/HiveQLKernel) Jupyter >= 5 (https://en.wikipedia.org/wiki/Apach

https://github.com/martin-saurer/jkernel
https://github.com/fiber-space/jupyter-kernel-jsr223
https://github.com/brendan-rius/jupyter-c-kernel
https://github.com/tammojan/taql-jupyter
http://coconut-lang.org/
https://github.com/paulovn/sparql-kernel
https://github.com/paulovn/aiml-chatbot-kernel
https://github.com/DeepHorizons/iarm
https://github.com/vatlab/SOS
https://github.com/notablemind/jupyter-nodejs
https://github.com/kevinior/jupyter-pike-kernel
https://github.com/imatlab/imatlab
https://github.com/ligee/kotlin-jupyter
https://github.com/sebasguts/jupyter_kernel_singular
https://github.com/maxpoint/spylon-kernel
https://github.com/joeltg/mit-scheme-kernel
https://github.com/abingham/jupyter-elm-kernel
https://github.com/hadim/scijava-jupyter-kernel
https://github.com/ktr-skmt/Isbt
http://beakerx.com/
https://github.com/goatchurchprime/jupyter_micropython_kernel/
https://github.com/SpencerPark/IJava
https://github.com/jerry40/guile-kernel
https://github.com/adafruit/circuitpython_kernel
https://github.com/adafruit/circuitpython
https://github.com/kylebarron/stata_kernel
https://github.com/TiesdeKok/ipystata
https://github.com/rmculpepper/iracket
https://github.com/laixintao/jupyter-dot-kernel
https://teradata.github.io/jupyterextensions/
https://github.com/EDS-APHP/HiveQLKernel
https://en.wikipedia.org/wiki/Apache_Hive


Name Jupyter/IPython
Version Language(s) 

EvCxR Jupyter Kernel
(https://github.com/google/evcxr/tree/master/evcxr_jupyter)

Jupyter 4,
JupyterLab,

nteract
Rust >

StuPyd Kernel (https://github.com/StuPyd/demo-kernel) Jupyter >= 4 StuPyd Programming La
(https://github.com/StuPyd/stup

coq_jupyter (https://github.com/EugeneLoy/coq_jupyter) Jupyter 5

Cadabra2
(https://github.com/kpeeters/cadabra2/blob/master/JUPYTER.rst) Jupyter 5 Cadabra2 (https://cadabra.

iMongo (https://github.com/gusutabopb/imongo) M

jupyter_kernel_chapel
(http://github.com/krishnadey30/jupyter_kernel_chapel) Jupyter Chapel (https://github.com

lang/

A Jupyter kernel for Vim script (https://github.com/mattn/vim_kernel) Jupyter Vim script (https://github.com/v

SSH Kernel (https://github.com/NII-cloud-operation/sshkernel) Jupyter

GAP Kernel (https://gap-packages.github.io/JupyterKernel/) Jupyter GAP

Wolfram Language for Jupyter
(https://github.com/WolframResearch/WolframLanguageForJupyter)

Wolfram Engine, i.e., a Wolfram 
or Mathematica ins

wolframscript  is opt
recom

GrADS kernel (https://github.com/ykatsu111/jupyter-grads-kernel) GrADS

Bacatá (https://github.com/cwi-swat/bacata) Jupyter Java & Rascal (https://rascal-

nelu-kernelu (https://github.com/3Nigma/nelu-kernelu) Jupyter No

IPolyglot (https://github.com/hpi-swa/ipolyglot) Jupyter
JavaScript, Ruby, Python, R, a

(https://www.graalvm.org/docs/re
manual/p

Emu86 Kernel (https://github.com/gcallah/Emu86/tree/master/kernels) Jupyter Intel Assembly La

Jupyter Kernels, https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

https://github.com/google/evcxr/tree/master/evcxr_jupyter
https://github.com/StuPyd/demo-kernel
https://github.com/StuPyd/stupyd-lang
https://github.com/EugeneLoy/coq_jupyter
https://github.com/kpeeters/cadabra2/blob/master/JUPYTER.rst
https://cadabra.science/
https://github.com/gusutabopb/imongo
http://github.com/krishnadey30/jupyter_kernel_chapel
https://github.com/chapel-lang/chapel/
https://github.com/mattn/vim_kernel
https://github.com/vim/vim/
https://github.com/NII-cloud-operation/sshkernel
https://gap-packages.github.io/JupyterKernel/
https://github.com/WolframResearch/WolframLanguageForJupyter
https://github.com/ykatsu111/jupyter-grads-kernel
https://github.com/cwi-swat/bacata
https://rascal-mpl.org/
https://github.com/3Nigma/nelu-kernelu
https://github.com/hpi-swa/ipolyglot
https://www.graalvm.org/docs/reference-manual/polyglot/
https://github.com/gcallah/Emu86/tree/master/kernels


Jupyter Ecosystem

A Visual Overview of Projects https://jupyter.readthedocs.io/en/latest/architecture/visual_overview.html



Jupyter Integrations
There has been considerable development by both Project Jupyter and external collaborators that have yielded a multitude of

options for Jupyter users.

Software Carpentry and Data Carpentry's ["Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter Notebooks as a Powerful Tool for Reproducible Research?

Jupyter Notebooks are great because they facilitate:

Documentation and literate programming by combining rich-text narrative concepts & machine-readable code. The

notebeook itself is a data-structure with metadata that can be easily read and parsed.

Exploration & development: Intermediate steps are saved in a clean, well documented format

Software Carpentry and Data Carpentry's ["Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter Notebooks as a Powerful Tool for Reproducible Research?

Jupyter Notebooks are great because they facilitate:

Communication/Collaboration: sharing research with peers, collaborators, reviewers, public

Publishing: It is simple and quick switch between the development & publishing stage

Software Carpentry and Data Carpentry's ["Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)



The 10 Rules of Jupyter

Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 1: Tell a story for an audience

Explanatory text to tell a compelling story (introduction to the topic, description of steps, and intepretation of the results.

Not just what you did but why you did it.

The story will depend on your goal and audience (your primary audience will most likely be your future self!)

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).



Rule 2: Document the process, not just the results

Make sure to document all your explorations (even those that led to dead ends!).

Don't wait until the end of an analysis to add explanatory text.

Clean, organize, and annotate your notebook (e.g., publication-ready images).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 3: Use cell divisions to make steps clear

One cell ~ one meaningful step of the analysis.

Modularize your code by cells and label the cells with markdown (https://jupyter-
notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html).
Avoid long cells (anything over 100 lines or one page is too long).

Organize your notebook into sections.

Split long notebooks into a series of notebooks and keep a top-level index notebook.

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 4: Modularize code

Avoid duplicate code

Wrap code in functions, modules, packages, or libraries.

It saves space, supports maintenance, eases debugging and interactivity (ipywidgets,

https://ipywidgets.readthedocs.io/en/stable/ (https://ipywidgets.readthedocs.io/en/stable/)).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 5: Record dependencies

Manage your dependencies using a package or environment manager like pip  or Conda .

Generate files such as Conda's environment.yml  or pip's requirements.txt  (./requirements.txt).

Print out your dependencies (e.g., using watermark, https://github.com/rasbt/watermark (https://github.com/rasbt/watermark))

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html
https://ipywidgets.readthedocs.io/en/stable/
file:///tmp/mozilla_versae0/requirements.txt
https://github.com/rasbt/watermark


In [2]:

import sys

!!{sys.executable} -m pip install watermark 

%reload_ext watermark 

%watermark -vim -p requests,jupyter,numpy,rise,pandas 

Rule 6: Use version control

Version control is critical (fixing bugs, new versions of code, etc.).

Git and GitHub are two commonly used solutions for this (templates exist, for example,

http://drivendata.github.io/cookiecutter-data-science/ (http://drivendata.github.io/cookiecutter-data-science/)).

Jupyter uses JSON for serialization, making diffing difficult (use nbdime instead, https://github.com/jupyter/nbdime

(https://github.com/jupyter/nbdime)).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 7: Build a pipeline

A well-designed notebook can be generalized into a pipeline.

Place key variable declarations at the top of the notebook.

Perform preparatory steps, like data cleaning, directly in the notebook and avoid manual interventions.

Try restarting your kernel and rerunning all cells.

Notebooks can be parameterized (e.g., papermill, https://github.com/nteract/papermill (https://github.com/nteract/papermill))

Code quality

Testing with Continuous Integration systems (for example, https://travis-ci.org/ (https://travis-ci.org/)).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 8: Share and explain your data

Make your data or a sample of your data publicly available along with the notebook

Host public copies of your data (for example, figshare (https://figshare.com/), Zenodo (https://zenodo.org/])).

Include Digital Object Identifiers (DOIs) when possible.

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

2019-12-11T15:45:22+01:00 

CPython 3.7.4 

IPython 7.8.0 

requests 2.22.0 

jupyter 1.0.0 

numpy 1.17.2 

rise 5.6.0 

pandas 0.25.1 

compiler   : GCC 7.3.0 

system     : Linux 

release    : 5.0.0-36-generic 

machine    : x86_64 

processor  : x86_64 

CPU cores  : 8 

interpreter: 64bit 

http://drivendata.github.io/cookiecutter-data-science/
https://github.com/jupyter/nbdime
https://github.com/nteract/papermill
https://travis-ci.org/
https://figshare.com/
https://zenodo.org/]


Rule 9: Design your notebooks to be read, run, and explored

Support others' reuse of your notebooks (add README and LICENSE (https://opensource.org/licenses) files).

Read:

Leave static HTML/PDF versions of all notebooks stored.

Use Nbviewer (https://nbviewer.jupyter.org/ (https://nbviewer.jupyter.org/)) to provide static views

Rule 9: Design your notebooks to be read, run, and explored

Support others' reuse of your notebooks (add README and LICENSE (https://opensource.org/licenses) files).

Run:

Use Binder (https://mybinder.org/ (https://mybinder.org/)) to provide a zero-install environment to run your notebooks in

the cloud

Create a portable containerized environment, such as a Docker image (https://docs.docker.com/

(https://docs.docker.com/)), or a dependency description file.

Rule 9: Design your notebooks to be read, run, and explored

Support others' reuse of your notebooks (add README and LICENSE (https://opensource.org/licenses) files).

Explore:

Consider using ipywidgets (https://ipywidgets.readthedocs.io/ (https://ipywidgets.readthedocs.io/))

Consider using Voalà (https://voila.readthedocs.io/ (https://voila.readthedocs.io/))

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 10: Advocate for open research

Become an advocate of this methodology in your lab or workplace!

Working with Jupyter

Let's now see an introduction on how to actually use Jupyter (./overview.ipynb).

https://opensource.org/licenses
https://nbviewer.jupyter.org/
https://opensource.org/licenses
https://mybinder.org/
https://docs.docker.com/
https://opensource.org/licenses
https://ipywidgets.readthedocs.io/
https://voila.readthedocs.io/
file:///tmp/mozilla_versae0/overview.ipynb

