e”’ DESIR Winter School: Shaping

new approaches to data
0 D ES' R management in arts and

a DARIAH-EU project humanities

Open Research Notebooks

10-13 Dec 2019 Lisbon (Portugal)

About me

Javier de la Rosa, versae@gmail.com
(mailto:versae@gmail.com), @versae
(https://twitter.com/versae),

Postdoctoral Researcher in NLP at UNED (ERC
POSTDATA Project), Spain

PhD in Hispanic Studies (Digital Humanities),
University of Western Ontario, Canada

Master in Artificial Intelligence, Universidad de
Sevilla, Spain

Ex-Research Software Engineer at Stanford
University, California

Ex-Technical Lead at the CulturePlex Lab,
University of Western Ontario, Canada

Introduction

New approaches to data management in arts and humanities:

» What is data in the humanities?
« Open Research Notebooks

* IPR and licensing

» Data Management Plans (DMP)

mailto:versae@gmail.com
https://twitter.com/versae

Introduction

—& Open Access Definition
—+) Open Access Initiatives

Open Access &=

Open Data £

- o
Open Science .—-QMMRMM‘

Open Science Definition

(o] Metri - ct &
Open Science Evaluation&—— —Lpen rpes am _mPa

Open Science Guidelines

Open Scierice Policies &

©) Open Science Projects Subject poicies &

Open Science Tools &——

Pontika, Nancy, et al. "Fostering open science to research using a taxonomy and an eLearning portal.”

—Open Access Routes &

Open Access Use and Reuse
Open Big Data

Open Data Definition

Open Data Journals

Open Data Standards

Open Data Use and Reuse
Open Government Data

Definition of Open Reproducible Research

Irreproducibility Studies
Open Lab/Notebooks

Open Science Workflows
Open Source in Open Science
Reprodu 'y Guidelines
Reproducibility Testing——

Open Peer Review

Organisational mandates &

Open Repositories
Open Services
Open Workflow Tools

Gold Route
Green Route

Altmetrics
Bibliometrics
Semantometrics
Webometrics

Funders policies
Governmental policies
Institutional policies
Open Access policies
Open Data Policies

the 15th international conference on knowledge technologies and data-driven business. ACM, 2015.

Notebooks

 Virtual environment
« Literate programming (Donald Knuth, 1983)

Proceedings of

= Weaving: Generating a comprehensive document about the program and its maintenance.

= Tangling: Generating machine executable code

« Document research procedures, data, calculations, and findings
» Track methodology to make it easier to reproduce results

History

e 1988, Wolfram Mathematica 1.0 (Demo! (https://www.wolfram.com/broadcast/video.php?
SX=&p=63&v=741))

Infl}e=
Series [Exp(f(x + h] = £[x = h]], {h, O, &}]

T
2 2
1+ 2 £'[x] h+2 £'[z] B +
3 (&3
‘1 £' (%] 4 [x] 3

+ - Y h +
3 3

4 (&)
2 £'[x] 2 £(x1 £ Ix1 4
‘ + O
3 3
5 2 (3 5
A f'(x] 2fMx) £ [z} £ ix] &
{ + - e~ I

15 3
13

2 (s}
£ Ix) IEDE XA IE)
+ -- 8
] 15 4 £ [x]
+
2

t-.-.-

Iy
4 £'[x] £ [x] & 7
..-----;.------.} h o+ O[R]

The Mathematica Story: A Scrapbook https://www.wolfram.com/mathematica/scrapbook/

https://www.wolfram.com/broadcast/video.php?sx=&p=63&v=741

History

« 1989, Maple 4.3
agquila!33> maple

N/ Maple 6 (IBM INTEL LINUX22)
AN |/1_. Copyright (c) 2000 by Waterloo Maple Inc.
% MAPLE / All rights reserved. Maple is a registered trademark of
<____ ____» Waterloo Maple Inc.

| Type 7 for help.
> read ‘dist.maple®;
Distributed Maple V1.1.7 (c) 1998-2001 Wolfgang Schreiner (RISC-Linz)
See http://www.risc.uni-linz.ac.at/software/distmaple
> dist[initialize] ([[virgo,linux], [andromeda,octane]]);
connecting virgo...
connecting andromeda. ..

okay
> tl := dist[start] (int, x™n, x):
> t2 := dist[start] (int, x"n, n);
> dist[wait] (t1) + dist[wait] (t2);
(n + 1) n
x X
e e
n+ 1 1n(x)
> dist[terminate] ();
okay

> quit;

Schreiner, Wolfgang, Christian Mittermaier, and Karoly Bosa. "Distributed Maple: Parallel computer algebra in
networked environments." Journal of Symbolic Computation 35.3 (2003): 305-347.

History

» 1997, MuPAD (acquired by Matlab in 2008)
il oo sz SO SR

e Faastt de | B e

s Ml B T Dty

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=15024533

History

» 2001, IPython

Python 3.6.3 | packaged by conda-forge | (default, Nov 4 2017, 10:13:32)
Type 'copyright', ‘credits' or 'license' for more information
IPython 7.0.0.dev — An enhanced Interactive Python. Type '?° for help.

In [1]: from numpy.fft import * 0 e Figure 1 {
...t from numpy import arange |
«x:! @ = arange(32)
«..% A = fft{a)
vaai T = fftfreq(32)

In [2]: %matplotlib tk
In [3]: from matplotlib.pyplot import stem

In [4]: stem(f, abs(A))
Out[4]: <Container object of 3 artists=

In [5]: _.

By Mbussonn - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68247365
(https://commons.wikimedia.org/w/index.php?curid=68247365)

https://commons.wikimedia.org/w/index.php?curid=68247365

History

e 2011, IPython 0.12 (IPython Notebook)

IPUkNOtebOOk Modulation Last checkpeint: Jan 05 11:01 (autesaved)

Flig Edit Wiew Insert Call Kemsel Help
B | x & B | 4 + O O p H Code - CelToobar: None o

An angle modulated signal generally can be written as

u(t) = Aceos(2nf t + (1))

In a phase modulated (PM) system, the phase is proportional to the message

B(t) = kymi(t)

In a frequency modulated (FM) system, instatantaneous frequency deviation is proportional to the message

50 £, = km(®) = 5= = (1)

In [12]: from numpy.fft import fft,fftfreq
t = arange(-06.1,0.1,0.0001)
m = sinc(1ee*t)
int_m = empty(len(t))
for k in range(len(t)):
int_m[k] = trapz(m[e:k],t[e:k])
u = cos(2*pi*250*t + 2*pi*1@0*int_m)
subplot(211)
plot(t,m)
subplot(212)
plotit,u)

Oout[12]: [<matplotlib.lines.Line2D at Oxd3a490c>]

-o'—t.lﬂ -0.05 DbD 0.05 010

|

|

By Shishirdasika - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30482405

N

e 5T

10

History

o 2014, Jupyter

: Jupyter Show Item Dict Last checkpoint: 10 hours ago (autosaved)

Filg Edit Wiew Inger Col Kol nglﬂ: Help
B + ¥ q B 4+ 4+ N B C code | = cemosibar
| In [11: dmport pywikibot

In [6]: |site = pywikibot.Site('wikidata',6 ‘'wikidata")

In [5): site
out[2]: Datasite("wikidata®, "wikidata®)

In [13): item = pywikibot.ItemPage(site, "(Q4115189°)

In [14): item
Outl14]: ItemPagel'Q4115189°')

In [15): item_dict = item.get()

In [16): item_dict

outfiel: {'aliases': {'ar': [NMwald] arle’ e _oad] arle'],
‘de’: ['Spielewiese', 'Sandbox'],
‘de-at': ['Sandkasten', 'Spielplatz'],
‘en': ['sB’,
'Property test',
'test’,
'‘Wikidata SandboxItem',
'‘Wikidata BOX"],
'it': ['sandbox di Wikidata'l,
‘ja's ['Sandbox', 'SUERY SR, 'BEAA-I, 'BREME],
'nl': ['wikidata-speeltuin'],
‘pt-br*: ['item para testes', 'teste', 'testes’, 'test', 'pégina de testes'],
‘ruts ['rect’, ‘tect2'l,
‘zh-hans': [HERRIEOS, HENIEMR 1),

‘claims®: {'P1110': [<pywikibot.page.Claim at Ox7f7d43b30390=],
'P1132": [<pywikibot.page.Claim at Ox7f7d43boedds=],
'P1302": [=pywikibot.page.Claim at Ox7f7d43b96158=,
<pywikibot.page.Claim at Ox7f7d43b962e8>,
<pywikibot.page.Claim at Ox7f7d43b96668>],

'P1346°: [<pywikibot.page.Claim at Ox7f7d43basfee],
'P1350": [<pywikibot.page.Claim at Ox7f7d43b93ebs=],
'P1351": [<pywikibot.page.Claim at Ox7f7d43bsbases],
'P13S5": [<pywikibot.page.Claim at Ox7f7d43b9cefos],
'P1356": [<pywikibot.page.Claim at Ox7f7d43b7b8SE>],
‘P18 : [<pywikibot.page,Claim at Ox7f7d43bafelo=],
'P1923": [<pywikibot.page,.Claim at Ox7f7d43bsbsdE>],
'F2047": [<pywikibot.page.Claim at Ox7f7d43b30TF0=],
'P2630": [<pywikibot.page.Claim at Ox7¥7d43b96900=],
'P27': [<pywikibot.page.Claim at Ox7f7d43bShoso=],
'P279': [<pywikibot.page.Claim at Ox7f7d43bSbedo>],
'P31': [<pywikibot.page.Claim at Ox7f7d43b3b278>,
<pywikibot.page.Claim at Ox7f7d43b%b3cE=],

‘Pa26': [epywikibot.page.Claim at Ox7f7d43bSsctes],

'parn s [emuaikibar rans Clais ar Av7FTddIRosakas]

By Tobias1984 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49790166

F Cantral Pansl Lageut

Pythen3 O

Mem: 103 MB

Notebooks

Libre

e Apache Zeppelin (https://zeppelin.apache.org/)

e Jupyter Notebook (https://jupyter.org/) (formerly IPython)

e JupyterLab (https://jupyterlab.readthedocs.io/en/stable/),
e Mozilla lodide (https://iodide.io),
e SageMath (http://www.sagemath.org/)

e R Markdown (https://rmarkdown.rstudio.com/)

Notebooks

Not libre

¢ Mathematica

¢ Maple

e Matlab

e SMath Studio

e Carbide

e Databricks cloud
e Observable

https://zeppelin.apache.org/
https://jupyter.org/
https://jupyterlab.readthedocs.io/en/stable/
https://iodide.io/
http://www.sagemath.org/
https://rmarkdown.rstudio.com/

Jupyter

Why Python though? Trends worldwide...

PYPL PopularitY of Programming Language

— Java

—— Python
7'< —— PHP
10% sme——e —— Javascript
————— . —— C/C++
—R
— Matlab
—— Ruby

1% ’
—— Kaotlin

— Julia

A anh

2005 2010 2015

Pierre Carbonnelle, 2019. http://pypl.github.io/PYPL.html

Jupyter

Why Python though? In Data Science...

What programming language do you use on a regular basis?

python [=239
saL I (4%
R I o
c/c++ I 0
Java [N (1%
Javascript/Typescript | NG 172
Bash |G 1.
MATLAE [2%
c#/NET [5%
Visual Basic/VEA [7%
pHP N 6%
sas/STATA [6%
Scala | 2%
Go M 2%
Ruby | 2%
Julia J 1%
Other [l 3%
None [2%
i

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Percent of Respondents
Note: Data are from the 2018 Kaggle Machine Learning and Data Science Survey. You can learn

more about the study here: http://www.kaggle.com/kaggle/kaggle-survey-2018. Atotal of 18827
respondents answered the question.

BUSINESS
BROADWAY

DATA SCIENCE | CUSTOMER ANALYTICS | MACHINE LEARNING

Copyright 2019 Business Over Broadway

Jupyter

Why Python though? In Digital Humanities...

40 most used tools

40

30

gEEel
NRERA
[0
N

S30US1INI00 JO gN

10

N
-~

oL

-

N\
e

z

— UoUiAd
Sdanm]

+ lydag

4 dusgesep
4 Bxawg

T 9nHED

4 15N4 e
+ 01f)s

+ 13TV
4 syoog &|Goon
4 |sox3

Josin

4 ML | ooy abenbue jeiney
4sleq

1 558IdDIOM

-+ PUSaL

14 ednug

T WKL

< SEWENOSD

1 X®1'I00

+ 500 wedop
+4105

1+ ogaubisog

+ OipE|Ed

v dd1-0833

4 3oz

4 auyeyuadp

1 18yra

4 densioog

4 1oBlassa)

1 sdepy g1boogy

- qo-siya

- SNGUYSUEL

- annemu) Bupoous aisnpy
- S1DMY

- QO0HED | OUED
- Had

- DI

+ BN

L aupmapn

Tools

Laure Barbot et. al. Tools mentioned in the proceedings of the annual ADHO conferences (2015-2019) https://lehkost.github.io/tools-dh-

proceedings/index.html

What is Jupyter?

Jupyter notebook, formerly known as IPython (or Interactive Python), is a flexible and powerful open source research tool that can
help you keep a narrative of your coding process. The name Jupyter is an acronym of the three core languages it was designed
for: JUlia, PYThon, and R. Project Jupyter supports interactive data science and scientific computing across more than 40
programming languages.

jupyter
O

Open source, interactive data science and scientific computing across over 40 programming
languages.

https://jupyter.org/

Software Carpentry and Data Carpentry's ['Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter as Coding Diary

You can think of the notebook as a lab or field diary that keeps a detailed record of the steps you take as you develop scripts
and programming workflows. Just as you would with a field notebook, it is important to develop good note-taking habits.

[0 ag | [=[@] 2
= Code_MNotes x LY

C 0 | @ locahost:8890/notebooks/Code_Notes.ipyrb Qaw O
£ Apps J Bookmarks HP Paulista Center Hotel - ©

= Jupyter Code_Notes uosaves r

File Edit View Inset Cell Kemel Help |Python 3 ©

+ x @B 4+ v M B C Coke Y Cell Toolbar: None

Coding notes on ...

In [1]: import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.

Explicit is better than implicit.
simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be cbvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Software Carpentry and Data Carpentry's ['Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter as Literate Computing

A literate computing environment is one that allows users not only to execute commands but also to store in a
literate document format the results of these commands along with figures and free-form text that can
include formatted mathematical expressions. In practice it can be seen as a blend of a command-line
environment such as the Unix shell with a word processor, since the resulting documents can be read like text,
but contain blocks of code that were executed by the underlying computational system

-- Fernando Pérez

Millman, KJ and Fernando Perez. 2014. “Developing open source scientific practice”. In Implementing Reproducible Research, Ed. Victoria

Stodden, Friedrich Leisch, and Roger D. Peng. https://osf.io/h9gsd/

Jupyter Architecture

On the front-end, the user will work with the:

1. Web Application: Browser-based tool for interactive development of notebook documents
2. Notebook Document: A representation of all content visible in the web application (internally stored as JSON files with the
.ipynb extension)

Software Carpentry and Data Carpentry's ['Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter Architecture

On the back-end (see more at [1 (http:/jupyter-notebook.readthedocs.io/en/latest/notebook.html), 2

1. Kernel: A separate process responsible for running user code. We will be working on Python kernels, although Jupyter is
capable of interfacing with other programming languages as well.

2. Notebook Server: Communicates with kernel and routes the Python programming language to the web browser.

Software Carpentry and Data Carpentry's ['Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

http://jupyter-notebook.readthedocs.io/en/latest/notebook.html
http://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

Jupyter Architecture

o
=

HTTP &
Websockets

)

Notebook | &
.' Browser Kernel
server

(

c
wn
1
=

MNotebook
file

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

Jupyter and the IPython Kernel

At its core, Jupyter works as a frontend to IPython.

e @ IPython

% ipython

Python 3.6.0

Type 'copyright', 'credits' or 'license' for more information

IPython 6.8.8.dev — An enhanced Interactive Python. Type '?' for help.

In [1]: from string import hexdigits
.ot from random import choice
...: def randhex(length=18):
return '0x'+''.join([choice(hexdigits) for x in range(18)1).1
ljust
lower
1strip

[
o

IPython https://ipython.readthedocs.io/en/stable/

In [1]:

import secrets; from IPython.display import display, Markdown; from notebook import notebookapp
; display(Markdown(f"[File - Open - New - Terminal]({list(notebookapp.list running servers())
[0]['base url']}terminals/{secrets.token hex(8)})"))

File — Open » New - Terminal (/terminals/94788ac49d3b0563)

Jupyter and the IPython Kernel

The REPL (Read-Eval-Print-Loop):

while True:
code = input(">>> ")
exec(code)

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

file:///terminals/94788ac49d3b0563

Jupyter Kernels

Terminal
IPython

stdin &
stdout

Python
execution

IPython
Kernel

Messages

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

Jupyter Kernels

$LANGUAGE
execution

$LANGUAGE
execution
&
JSON, @MQ

IPython
JSON, @MQ
machinery

machinery

Wrapper
Kernel

How IPython and Jupyter Notebook work https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

Jupyter Kernels

Name Jupyterll\lz’tsr:g: Language(s)
Agda kernel (https://github.com/Iclem/agda-kernel)
Dyalog_Jupyter Kernel (https://github.com/Dyalog/dyalog-jupyter- APL
kernel)
Coarray-Fortran (https://github.com/sourceryinstitute/jupyter-CAF- Jupyter 4.0 Fortran 2C
kernel)
Ansible Jupyter Kernel (https://github.com/ansible/ansible-jupyter- Jupyter A
n
kernel) 5.6.0.dev0
sparkmagic (https://github.com/jupyter-incubator/sparkmagic) Jupyter >=4.0 Pyspark (Python 2 & 3), Spe;rl;
sas_kernel (https://github.com/sassoftware/sas_kernel) Jupyter 4.0 pytho
IPyKernel (https://github.com/ipython/ipykernel) Jupyter 4.0 python 2.°
1Julia (https://github.com/JuliaLang/1Julia.jl) juli
IHaskell (https://github.com/gibiansky/IHaskell) gh
IRuby (https://github.com/SciRuby/iruby) ruk
tslab (https://github.com/yunabe/tslab), Typescript 3.7.2, JavaScript
IJavascript (https://github.com/n-riescol/ijavascript), nodejs
ITypeScript (https://github.com/nearbydelta/itypescript) Typescrif
jpCoffeescript (https://github.com/n-riescoljp-coffeescript) coffeescri
jp-LiveScript (https://github.com/p2edwards/jp-livescript), livescriy
ICSharp (https://github.com/zabirauf/icsharp), Jupyter 4.0
IRKernel (http://irkernel.github.io/), IPython 3.0
SageMath (http://www.sagemath.org/), Jupyter 4
pari_jupyter (https://github.com/jdemeyer/pari_jupyter), Jupyter 4 PARI/G
IESharp (https://github.com/fsprojects/IfSharp), Jupyter 4
e Jupyter >= 4,
lgo (https://github.com/yunabe/lgo), JupyterLab G
. i . Jupyter >= 4, :
iGalileo (https://github.com/cascala/igalileo) JupyterLab Galileo
e . Jupyter 4.1,
gopherlab (https://github.com/fabian-z/gopherlab) JupyterLab G
Jupyter 4,
Gophernotes (https://github.com/gopherdata/gophernotes) JupyterLab, G
nteract
IGo (https://github.com/takluyver/igo) G
IScala (https://github.com/mattpap/IScala)
almond (old name: Jupyter-scala)_(https://github.com/almond- IPython>=3.0 Scal

sh/almond)

IErlang_(https://github.com/robbielynch/ierlang)

IPython 2.3

https://github.com/lclem/agda-kernel
https://github.com/Dyalog/dyalog-jupyter-kernel
https://github.com/sourceryinstitute/jupyter-CAF-kernel
https://github.com/ansible/ansible-jupyter-kernel
https://github.com/jupyter-incubator/sparkmagic
https://github.com/sassoftware/sas_kernel
https://github.com/ipython/ipykernel
https://github.com/JuliaLang/IJulia.jl
https://github.com/gibiansky/IHaskell
https://github.com/SciRuby/iruby
https://github.com/yunabe/tslab
https://github.com/n-riesco/ijavascript
https://github.com/nearbydelta/itypescript
https://github.com/n-riesco/jp-coffeescript
https://github.com/p2edwards/jp-livescript
https://github.com/zabirauf/icsharp
http://irkernel.github.io/
http://www.sagemath.org/
https://github.com/jdemeyer/pari_jupyter
https://github.com/fsprojects/IfSharp
https://github.com/yunabe/lgo
https://github.com/cascala/igalileo
https://github.com/fabian-z/gopherlab
https://github.com/gopherdata/gophernotes
https://github.com/takluyver/igo
https://github.com/mattpap/IScala
https://github.com/almond-sh/almond
https://github.com/robbielynch/ierlang

Jupyter/IPython

Name Version Language(s)

o . IPython >= 2.2
ITorch (https://github.com/facebook/iTorch), and <= 5.x Torch 7
IElixir (https://github.com/pprzetacznik/IElixir) Jupyter >= 4.0 Elix

ierl (https://github.com/filmor/ierl)

IAldor (https://github.com/mattpap/IAldor)

IOCaml (https://github.com/andrewray/iocaml)

OCaml-Jupyter (https://github.com/akabe/ocaml-jupyter)

IForth (https://github.com/jdfreder/iforth)

peforth (https://github.com/hcchengithub/peforth)

IPerl (https://metacpan.org/release/Devel-IPerl),

Perl6 (https://github.com/gabrielash/p6-net-jupyter),

IPerl6 (https://github.com/timol/iperl6kernel)

Jupyter-Perl6 (https://github.com/bduggan/p6-jupyter-kernel)

IPHP (https://github.com/dawehner/ipython-php)

Jupyter-PHP (https://github.com/Litipk/Jupyter-PHP),

IOctave (https://github.com/calysto/octave kernel)

IScilab (https://github.com/calysto/scilab_kernel),

MATLAB Kernel (https://github.com/calysto/matlab_kernel)

Bash (https://github.com/takluyver/bash_kernel)

Z shell (https://github.com/danylo-dubinin/zsh-jupyter-kernel)

Pharo Smalltalk (https://github.com/jmari/JupyterTalk),

PowerShell (https://github.com/vors/jupyter-powershell)

CloJupyter (https://github.com/roryk/clojupyter),

jupyter-kernel-jsr223 (https://github.com/fiber-space/jupyter-kernel-
jsr223),

Hy Kernel (https://github.com/bollwyvl/hy_kernel/),

Calysto Hy (https://github.com/Calysto/calysto_hy)

Redis Kernel (https://github.com/supercoderz/redis_kernel)

jove (https://www.npmjs.com/package/jove)

jp-babel (https://www.npmjs.com/package/jp-babel)

ICalico (http://wiki.roboteducation.org/ICalico),

IMathics (http://nbviewer.ipython.org/gist/sn6uv/8381447),

IWolfram (https://github.com/mmatera/iwolfram)

Lua Kernel (https://github.com/neomantra/lua_ipython_kernel)

Jupyter >= 4.0

IPython >=1

IPython >=1.1

Jupyter >= 4.0

IPython >=3

IPython
6/Jupyter 5

Jupyter >= 4

Jupyter
IPython >= 2
Jupyter 4.0
Jupyter
Jupyter
Jupyter
IPython >=3
IPython >=3
IPython >= 3
IPython >=3
Jupyter

Jupyter
Jupyter>=4.0

Jupyter
Jupyter

IPython >=3

Jupyter

IPython >=2

Erlang >= 19, Elixir >= 1.4,

OCaml

OCaml

PH

PHP

ZS

Clojur

Cl

Wolfram Matt

https://github.com/facebook/iTorch
https://github.com/pprzetacznik/IElixir
https://github.com/filmor/ierl
https://github.com/mattpap/IAldor
https://github.com/andrewray/iocaml
https://github.com/akabe/ocaml-jupyter
https://github.com/jdfreder/iforth
https://github.com/hcchengithub/peforth
https://metacpan.org/release/Devel-IPerl
https://github.com/gabrielash/p6-net-jupyter
https://github.com/timo/iperl6kernel
https://github.com/bduggan/p6-jupyter-kernel
https://github.com/dawehner/ipython-php
https://github.com/Litipk/Jupyter-PHP
https://github.com/calysto/octave_kernel
https://github.com/calysto/scilab_kernel
https://github.com/calysto/matlab_kernel
https://github.com/takluyver/bash_kernel
https://github.com/danylo-dubinin/zsh-jupyter-kernel
https://github.com/jmari/JupyterTalk
https://github.com/vors/jupyter-powershell
https://github.com/roryk/clojupyter
https://github.com/achesnais/clj-jupyter
https://github.com/fiber-space/jupyter-kernel-jsr223
https://github.com/bollwyvl/hy_kernel/
https://github.com/Calysto/calysto_hy
https://github.com/supercoderz/redis_kernel
https://www.npmjs.com/package/jove
https://www.npmjs.com/package/jp-babel
http://wiki.roboteducation.org/ICalico
http://nbviewer.ipython.org/gist/sn6uv/8381447
https://github.com/mmatera/iwolfram
https://github.com/neomantra/lua_ipython_kernel

Name

Jupyter/IPython
Version

Language(s)

IPurescript (https://github.com/Eoksni/ipurescript)

IPyLua (https://github.com/pakozm/IPyLua)

ILua (https://github.com/guysv/ilua)

Calysto Scheme (https://github.com/Calysto/calysto_scheme),

Calysto Processing_(https://github.com/Calysto/calysto_processing),

idl_kernel (https://github.com/Istagner/idl_kernel)

Mochi Kernel (https://github.com/pya/mochi-kernel),

Lua (used in Splash)
(https://github.com/scrapinghub/splash/tree/master/splash/kernel)

Apache Toree (formerly Spark Kernel),
(https://github.com/apache/incubator-toree)

Skulpt Python Kernel (https://github.com/Calysto/skulpt_python)

Calysto Bash (https://github.com/Calysto/calysto_bash)

MetaKernel Python
(https://github.com/Calysto/metakernel/tree/master/metakernel_python)

IVisual (https://pypi.python.org/pypi/lVisual)

IBrainfuck (https://github.com/robbielynch/ibrainfuck)

KDB+/Q Kernel (IKdbQ)_(https://github.com/jvictorchen/IKdbQ),

KDB+/Q _Kernel (KdbQ Kernel),
(https://github.com/newtux/KdbQ_kernel)

ICryptol (https://github.com/GaloisInc/ICryptol)

cling_(https://github.com/root-mirror/cling)

xeus-cling_(https://github.com/QuantStack/xeus-cling),

Xonsh (https://github.com/calysto/xonsh_kernel)

Prolog_(https://github.com/Calysto/calysto_prolog),

SWI-Prolog_(https://github.com/madmax2012/SWI-Prolog-Kernel),

cl-jupyter (https://github.com/fredokun/cl-jupyter)

common-lisp-jupyter (https://github.com/yitzchak/common-lisp-jupyter)

Maxima-Jupyter (https://github.com/robert-dodier/maxima-jupyter)

Calysto LC3 (https://github.com/Calysto/calysto_Ic3)

Yacas (https://github.com/grzegorzmazur/yacas_kernel)

1Jython (https://github.com/suvarchal/lJython),

ROOT (https://github.com/root-
mirror/root/tree/master/bindings/pyroot/JupyROOT),

Gnuplot Kernel (https://github.com/has2k1/gnuplot_kernel)

Tcl (https://github.com/rpep/tcl_kernel),

Jupyter

IPython >= 3.1

Jupyter

Jupyter 4

Jupyter >=5.1

Jupyter >=4.0

Jupyter
Jupyter

Jupyter

Jupyter

Jupyter

P

Processin

Scala, P

Skulp

SW

Comr

Comr

Jy

https://github.com/Eoksni/ipurescript
https://github.com/pakozm/IPyLua
https://github.com/guysv/ilua
https://github.com/Calysto/calysto_scheme
https://github.com/Calysto/calysto_processing
https://github.com/lstagner/idl_kernel
https://github.com/pya/mochi-kernel
https://github.com/scrapinghub/splash/tree/master/splash/kernel
https://github.com/apache/incubator-toree
https://github.com/Calysto/skulpt_python
https://github.com/Calysto/calysto_bash
https://github.com/Calysto/metakernel/tree/master/metakernel_python
https://pypi.python.org/pypi/IVisual
https://github.com/robbielynch/ibrainfuck
https://github.com/jvictorchen/IKdbQ
https://github.com/newtux/KdbQ_kernel
https://github.com/GaloisInc/ICryptol
https://github.com/root-mirror/cling
https://github.com/QuantStack/xeus-cling
https://github.com/calysto/xonsh_kernel
https://github.com/Calysto/calysto_prolog
https://github.com/madmax2012/SWI-Prolog-Kernel
https://github.com/fredokun/cl-jupyter
https://github.com/yitzchak/common-lisp-jupyter
https://github.com/robert-dodier/maxima-jupyter
https://github.com/Calysto/calysto_lc3
https://github.com/grzegorzmazur/yacas_kernel
https://github.com/suvarchal/IJython
https://github.com/root-mirror/root/tree/master/bindings/pyroot/JupyROOT
https://github.com/has2k1/gnuplot_kernel
https://github.com/rpep/tcl_kernel

Jupyter/IPython

Name Version Language(s)
o -) Jupyter) p
J (https://github.com/martin-saurer/jkernel), Notebook/Lab J 805-807 (J¢
Jython (https://github.com/fiber-space/jupyter-kernel-jsr223) Jupyter>=4.0 Jythot
C (https://github.com/brendan-rius/jupyter-c-kernel) Jupyter
TaQL (https://github.com/tammojan/tagl-jupyter), Jupyter
Coconut (http://coconut-lang.org/), Jupyter
SPARQL (https://github.com/paulovn/spargl-kernel) Jupyter 4 Python 2.7
AIML chatbot (https://github.com/paulovn/aiml-chatbot-kernel) Jupyter 4 Py
IArm (https://github.com/DeepHorizons/iarm), Jupyter 4 ARMvV6
SoS (https://github.com/vatlab/SOS), Jupyter 4 Pythc

jupyter-nodejs (https:/github.com/notablemind/jupyter-node;js),

Pike (https://github.com/kevinior/jupyter-pike-kernel),

imatlab (https://github.com/imatlab/imatlab)

jupyter-kotlin (https://github.com/ligee/kotlin-jupyter)

jupyter_kernel_singular
(https://github.com/sebasguts/jupyter_kernel_singular),

spylon-kernel (https://github.com/maxpoint/spylon-kernel)

mit-scheme-kernel (https://github.com/joeltg/mit-scheme-kernel)

elm-kernel (https://github.com/abingham/jupyter-elm-kernel)

SciJava Jupyter Kernel (https://github.com/hadim/scijava-jupyter-
kernel)

Isbt (https://github.com/ktr-skmt/Isbt)

BeakerX (http://beakerx.com/)

MicroPython
(https://github.com/goatchurchprime/jupyter_micropython_kernel/)

IJava (https://github.com/SpencerPark/lJava)

Guile (https://github.coml/jerry40/guile-kernel)

circuitpython_kernel (https://github.com/adafruit/circuitpython_kernel),

stata_kernel (https://github.com/kylebarron/stata_kernel)

iPyStata (https://github.com/TiesdeKok/ipystata)

IRacket (https://github.com/rmculpepper/iracket)

jupyter-dot-kernel (https://github.com/laixintao/jupyter-dot-kernel)

Teradata SQL kernel and extensions
(https://teradata.qgithub.io/jupyterextensions/)

HiveQL Kernel (https://github.com/EDS-APHP/HiveQLKernel)

Jupyter, iPython
3.X

IPython >= 3
ipykernel >= 4.1

Jupyter

Jupyter

ipykernel >=4.5
Jupyter 4.0

Jupyter
Jupyter 4.3.0

Jupyter 4.3.0

Jupyter
Jupyter

Jupyter 5.2

Jupyter

Jupyter >=5
Jupyter
IPython >=3
Jupyter >= 4.0

JupyterLab >=
0.34

Jupyter >= 5

NodeJS, Babel, Cloji
Pik
MATLAB >

Kotlin 1.1-N

Singu

python >= 3.5, scals

MIT Sch

Java + 9 scripting lal

sbt

ESP826¢

(https://github.com/adafruit/circui

Racket

dot/

(https://en.wikipedia.org/wiki/Apact

https://github.com/martin-saurer/jkernel
https://github.com/fiber-space/jupyter-kernel-jsr223
https://github.com/brendan-rius/jupyter-c-kernel
https://github.com/tammojan/taql-jupyter
http://coconut-lang.org/
https://github.com/paulovn/sparql-kernel
https://github.com/paulovn/aiml-chatbot-kernel
https://github.com/DeepHorizons/iarm
https://github.com/vatlab/SOS
https://github.com/notablemind/jupyter-nodejs
https://github.com/kevinior/jupyter-pike-kernel
https://github.com/imatlab/imatlab
https://github.com/ligee/kotlin-jupyter
https://github.com/sebasguts/jupyter_kernel_singular
https://github.com/maxpoint/spylon-kernel
https://github.com/joeltg/mit-scheme-kernel
https://github.com/abingham/jupyter-elm-kernel
https://github.com/hadim/scijava-jupyter-kernel
https://github.com/ktr-skmt/Isbt
http://beakerx.com/
https://github.com/goatchurchprime/jupyter_micropython_kernel/
https://github.com/SpencerPark/IJava
https://github.com/jerry40/guile-kernel
https://github.com/adafruit/circuitpython_kernel
https://github.com/adafruit/circuitpython
https://github.com/kylebarron/stata_kernel
https://github.com/TiesdeKok/ipystata
https://github.com/rmculpepper/iracket
https://github.com/laixintao/jupyter-dot-kernel
https://teradata.github.io/jupyterextensions/
https://github.com/EDS-APHP/HiveQLKernel
https://en.wikipedia.org/wiki/Apache_Hive

Jupyter/IPython

Name Version Language(s)

EVCxR Jupyter Kernel JuJUF:Z:ﬁ;ﬁ' Rust >
(https://github.com/google/evexr/tree/master/evexr_jupyter), pynteraci

i) _ StuPyd Programming_L:

StuPyd Kernel (https://github.com/StuPyd/demo-kernel), Jupyter >= 4 (https:/igithub.com/StuPyd/stur
cog_jupyter (https://github.com/Eugeneloy/coq_jupyter), Jupyter 5

Cadabra2 .

(https://github.com/kpeeters/cadabra2/blob/master/JUPYTER.rst) Jupyter 5 Cadabra2 (htips:/icadabra,

iMongo (https://github.com/gusutabopb/imongo), M

jupyter_kernel_chapel Jupvter Chapel (https://github.corr

(http://github.com/krishnadey30/jupyter_kernel_chapel), py lang;

A Jupyter kernel for Vim script (https:/github.com/mattn/vim_kernel) Jupyter Vim script (https:/github.com/
SSH Kernel (https://github.com/NII-cloud-operation/sshkernel) Jupyter

GAP Kernel (https://gap-packages.github.io/JupyterKernel/) Jupyter GAP

Wolfram Engine, i.e., a Wolfram

Wolfram Language for Jupyter or Mathematica ins

(https://github.com/WolframResearch/WolframLanguageForJupyter) wolframscript is opt

recom

GrADS kernel (https://github.com/ykatsulll/jupyter-grads-kernel) GrAD

Bacaté (https://github.com/cwi-swat/bacata), Jupyter Java & Rascal (https://rascal-

nelu-kernelu (https://github.com/3Nigma/nelu-kernelu) Jupyter Nc

JavaScript, Ruby, Python, R, a

1Polyglot (https://github.com/hpi-swa/ipolyglot), Jupyter (https://www.graalvm.org/docs/re

manual/f

Emu86 Kernel (https://github.com/gcallah/Emu86/tree/master/kernels) Jupyter Intel Assembly Li

Jupyter Kernels, https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

https://github.com/google/evcxr/tree/master/evcxr_jupyter
https://github.com/StuPyd/demo-kernel
https://github.com/StuPyd/stupyd-lang
https://github.com/EugeneLoy/coq_jupyter
https://github.com/kpeeters/cadabra2/blob/master/JUPYTER.rst
https://cadabra.science/
https://github.com/gusutabopb/imongo
http://github.com/krishnadey30/jupyter_kernel_chapel
https://github.com/chapel-lang/chapel/
https://github.com/mattn/vim_kernel
https://github.com/vim/vim/
https://github.com/NII-cloud-operation/sshkernel
https://gap-packages.github.io/JupyterKernel/
https://github.com/WolframResearch/WolframLanguageForJupyter
https://github.com/ykatsu111/jupyter-grads-kernel
https://github.com/cwi-swat/bacata
https://rascal-mpl.org/
https://github.com/3Nigma/nelu-kernelu
https://github.com/hpi-swa/ipolyglot
https://www.graalvm.org/docs/reference-manual/polyglot/
https://github.com/gcallah/Emu86/tree/master/kernels

Jupyter Ecosystem

: Metapackage and
jUthEr overview docs

Notebooks for
multiple users
with logins

Notebooks for
multiple users
with no logins

Notebooks as HTML views of

assignments - notebooks on the
creating and grading web

Servers

Applications
Jupyter Qt
console application

Jupyter terminal
application

Jupyter notebook
application

Convert notebook
files to other formats

jupyter command,

config file handling and ,
filesystem locations Messaging

ipynb file loading, ., Interactive
saving, format version . widgets

migration and trust
ipywidgets

Kernel

communication i py ke rne |

machinery

Kernel

Python execution,
magics, and ipython
ipythen terminal

interface

Everything
depends on:

traitlets

Config system and
widget base layer

A Visual Overview of Projects https://jupyter.readthedocs.io/en/latest/architecture/visual_overview.html

Jupyter Integrations

There has been considerable development by both Project Jupyter and external collaborators that have yielded a multitude of

options for Jupyter users.

lterative Development
Books
PDF

I P [y] . Wikis
. |
OnlineData [—————» » | — &=
/ i ;_ 9 B|Og§
CSVIXLS -

Fi ~—a
- Web/Gist
Email
/Github
Unstructured /
Data Revision Control ‘,ﬂ'
' /
/ Python
e
SQU/HBase Jipynb Files K__——— nbviewar

Software Carpentry and Data Carpentry's ['Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

Jupyter Notebooks as a Powerful Tool for Reproducible Research?

Jupyter Notebooks are great because they facilitate:

« Documentation and literate programming by combining rich-text narrative concepts & machine-readable code. The
notebeook itself is a data-structure with metadata that can be easily read and parsed.
o Exploration & development: Intermediate steps are saved in a clean, well documented format

Software Carpentry and Data Carpentry's ['Reproducible Research using Jupyter Notebooks"](https://reproducible-science-
curriculum.github.io/workshop-RR-Jupyter/)

Jupyter Notebooks as a Powerful Tool for Reproducible Research?

Jupyter Notebooks are great because they facilitate:

« Communication/Collaboration: sharing research with peers, collaborators, reviewers, public
¢ Publishing: It is simple and quick switch between the development & publishing stage

Software Carpentry and Data Carpentry's ['Reproducible Research using Jupyter Notebooks"](https://reproducible-science-

curriculum.github.io/workshop-RR-Jupyter/)

The 10 Rules of Jupyter
Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks

Use version
control

T
6/; o -

Record Working pipeline Open
dependencies . data
with

code

Designing,
Modularize Shafing Interactive
code and code

Simplified explaining
Notebook E@
Cycle

Advocate

add Organizing

divisions and
documenting . Read, Run,
Explore
: ® o0

Document “

the process Tell a story

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

Rule 1: Tell a story for an audience

o Explanatory text to tell a compelling story (introduction to the topic, description of steps, and intepretation of the results.
¢ Not just what you did but why you did it.
e The story will depend on your goal and audience (your primary audience will most likely be your future self!)

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

Rule 2: Document the process, not just the results

e Make sure to document all your explorations (even those that led to dead ends!).
o Don't wait until the end of an analysis to add explanatory text.
e Clean, organize, and annotate your notebook (e.g., publication-ready images).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7

(2019).

Rule 3: Use cell divisions to make steps clear

e One cell ~ one meaningful step of the analysis.
o Modularize your code by cells and label the cells with markdown (https://jupyter-
notebook.readthedocs.iolen/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html).

e Avoid long cells (anything over 100 lines or one page is too long).

e Organize your notebook into sections.

e Split long notebooks into a series of notebooks and keep a top-level index notebook.

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

Rule 4: Modularize code

e Avoid duplicate code

e Wrap code in functions, modules, packages, or libraries.

e |t saves space, supports maintenance, eases debugging and interactivity (ipywidgets,
https://ipywidgets.readthedocs.io/en/stable/ (https://ipywidgets.readthedocs.io/en/stable/)).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

Rule 5: Record dependencies

e Manage your dependencies using a package or environment manager like pip or Conda .

o Generate files such as Conda's environment.yml orpip's requirements.txt (/requirements.txt).

e Print out your dependencies (e.g., using watermark, https://github.com/rasbt/watermark (https:/github.com/rasbt/watermark))

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html
https://ipywidgets.readthedocs.io/en/stable/
file:///tmp/mozilla_versae0/requirements.txt
https://github.com/rasbt/watermark

In [2]:

import sys

I''{sys.executable} -m pip install watermark
%sreload_ext watermark

%watermark -vim -p requests, jupyter,numpy,rise,pandas

2019-12-11T15:45:22+01:00

CPython 3.7.4
IPython 7.8.0

requests 2.22.0
jupyter 1.0.0

numpy 1.17.2

rise 5.6.0

pandas 0.25.1

compiler : GCC 7.3.0

system : Linux

release : 5.0.0-36-generic
machine : x86_64

processor : x86 64

CPU cores : 8
interpreter: 64bit

Rule 6: Use version control

e Version control is critical (fixing bugs, new versions of code, etc.).
e Git and GitHub are two commonly used solutions for this (templates exist, for example,

http://drivendata.github.io/cookiecutter-data-science/ (http://drivendata.github.io/cookiecutter-data-science/)).

o Jupyter uses JSON for serialization, making diffing difficult (use nbdime instead, https://github.com/jupyter/nbdime

(https://github.com/jupyter/nbdime)).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

Rule 7: Build a pipeline

o A well-designed notebook can be generalized into a pipeline.

o Place key variable declarations at the top of the notebook.

o Perform preparatory steps, like data cleaning, directly in the notebook and avoid manual interventions.
e Try restarting your kernel and rerunning all cells.

e Notebooks can be parameterized (e.g., papermill, https://github.com/nteract/papermill (https://github.com/nteract/papermill))
= Code quality

= Testing with Continuous Integration systems (for example, https://travis-ci.org/ (https://travis-ci.org/)).

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

Rule 8: Share and explain your data

e Make your data or a sample of your data publicly available along with the notebook

e Host public copies of your data (for example, figshare (https://figshare.com/), Zenodo (https://zenodo.org/])).

¢ Include Digital Object Identifiers (DOIs) when possible.

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

http://drivendata.github.io/cookiecutter-data-science/
https://github.com/jupyter/nbdime
https://github.com/nteract/papermill
https://travis-ci.org/
https://figshare.com/
https://zenodo.org/]

Rule 9: Design your notebooks to be read, run, and explored

Support others' reuse of your notebooks (add README and LICENSE (https://opensource.org/licenses) files).

e Read:
= Leave static HTML/PDF versions of all notebooks stored.

= Use Nbviewer (https://nbviewer.jupyter.org/ (https://nbviewer.jupyter.org/)) to provide static views

Rule 9: Design your notebooks to be read, run, and explored

Support others' reuse of your notebooks (add README and LICENSE (https://opensource.org/licenses) files).

¢ Run:

= Use Binder (https://mybinder.org/ (https://mybinder.org/)) to provide a zero-install environment to run your notebooks in

the cloud

= Create a portable containerized environment, such as a Docker image (https://docs.docker.com/

(https://docs.docker.com/)), or a dependency description file.

Rule 9: Design your notebooks to be read, run, and explored

Support others' reuse of your notebooks (add README and LICENSE (https://opensource.org/licenses) files).

e Explore:
= Consider using ipywidgets (https://ipywidgets.readthedocs.io/ (https://ipywidgets.readthedocs.io/))

= Consider using Voala (https://voila.readthedocs.io/ (https://voila.readthedocs.io/))

Rule, Adam, et al. "Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks." PLoS computational biology 15.7
(2019).

Rule 10: Advocate for open research

Become an advocate of this methodology in your lab or workplace!

Working with Jupyter

Let's now see an introduction on how to actually use Jupyter (./overview.ipynb).

https://opensource.org/licenses
https://nbviewer.jupyter.org/
https://opensource.org/licenses
https://mybinder.org/
https://docs.docker.com/
https://opensource.org/licenses
https://ipywidgets.readthedocs.io/
https://voila.readthedocs.io/
file:///tmp/mozilla_versae0/overview.ipynb

